skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Garofalo, Lauren A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rapid production of formic acid in biomass burning smoke is not captured by the Master Chemical Mechanism (MCM) nor simplified GEOS-Chem chemistry, likely due to missing secondary chemical production. 
    more » « less
  2. Wildfires are an important atmospheric source of primary organic aerosol (POA) and precursors for secondary organic aerosol (SOA) at regional and global scales. However, there are large uncertainties surrounding the emissions and physicochemical processes that control the transformation, evolution, and properties of POA and SOA in large wildfire plumes. We develop a plume version of a kinetic model to simulate the dilution, oxidation chemistry, thermodynamic properties, and microphysics of organic aerosol (OA) in wildfire smoke. The model is applied to study the in-plume OA in four large wildfire smoke plumes intercepted during an aircraft-based field campaign in summer 2018 in the western United States. Based on estimates of dilution and oxidant concentrations before the aircraft first intercepted the plumes, we simulate the OA evolution from very close to the fire to several hours downwind. Our model results and sensitivity simulations suggest that dilution-driven evaporation of POA and simultaneous photochemical production of SOA are likely to explain the observed evolution in OA mass with physical age. The model, however, substantially underestimates the change in the oxygen-to-carbon ratio of the OA compared to measurements. In addition, we show that the rapid chemical transformation within the first hour after emission is driven by higher-than-ambient OH concentrations (3×10 6 -10 7 molecules cm -3 ) and the slower evolution over the next several hours is a result of lower-than-ambient OH concentrations (<10 6 molecules cm -3 ) and depleted SOA precursors. Model predictions indicate that the OA measured several hours downwind of the fire is still dominated by POA but with an SOA fraction that varies between 30% and 56% of the total OA. Semivolatile, heterocyclic, and oxygenated aromatic compounds, in that order, were found to contribute substantially (>90%) to SOA formation. Future work needs to focus on better understanding the dynamic evolution closer to the fire and resolving the rapid change in the oxidation state of OA with physical age. 
    more » « less
  3. null (Ed.)
  4. Abstract We use observations from dual high‐resolution mass spectrometers to characterize ecosystem‐atmosphere fluxes of reactive carbon across an extensive range of volatile organic compounds (VOCs) and test how well that exchange is represented in current chemical transport models. Measurements combined proton‐transfer reaction mass spectrometry (PTRMS) and iodide chemical ionization mass spectrometry (ICIMS) over a Colorado pine forest; together, these techniques have been shown to capture the majority of ambient VOC abundance and reactivity. Total VOC mass and associated OH reactivity fluxes were dominated by emissions of 2‐methyl‐3‐buten‐2‐ol, monoterpenes, and small oxygenated VOCs, with a small number of compounds detected by PTRMS driving the majority of both net and upward exchanges. Most of these dominant species are explicitly included in chemical models, and we find here that GEOS‐Chem accurately simulates the net and upward VOC mass and OH reactivity fluxes under clear sky conditions. However, large upward terpene fluxes occurred during sustained rainfall, and these are not captured by the model. Far more species contributed to the downward fluxes than are explicitly modeled, leading to a major underestimation of this key sink of atmospheric reactive carbon. This model bias mainly reflects missing and underestimated concentrations of depositing species, though inaccurate deposition velocities also contribute. The deposition underestimate is particularly large for assumed isoprene oxidation products, organic acids, and nitrates—species that are primarily detected by ICIMS. Net ecosystem‐atmosphere fluxes of ozone reactivity were dominated by sesquiterpenes and monoterpenes, highlighting the importance of these species for predicting near‐surface ozone, oxidants, and aerosols. 
    more » « less
  5. null (Ed.)
    Aerosols impact climate, human health, and the chemistry of the atmosphere, and aerosol pH plays a major role in the physicochemical properties of the aerosol. However, there remains uncertainty as to whether aerosols are acidic, neutral, or basic. In this research, we show that the pH of freshly emitted (nascent) sea spray aerosols is significantly lower than that of sea water (approximately four pH units, with pH being a log scale value) and that smaller aerosol particles below 1 μm in diameter have pH values that are even lower. These measurements of nascent sea spray aerosol pH, performed in a unique ocean−atmosphere facility, provide convincing data to show that acidification occurs “across the interface” within minutes, when aerosols formed from ocean surface waters become airborne. We also show there is a correlation between aerosol acidity and dissolved carbon dioxide but no correlation with marine biology within the seawater. We discuss the mechanisms and contributing factors to this acidity and its implications on atmospheric chemistry. 
    more » « less